Peristalsis and propulsion of colonic content can occur after blockade of major neuroneuronal and neuromuscular transmitters in isolated guinea pig colon.
نویسندگان
چکیده
We recently identified hexamethonium-resistant peristalsis in the guinea pig colon. We showed that, following acute blockade of nicotinic receptors, peristalsis recovers, leading to normal propagation velocities of fecal pellets along the colon. This raises the fundamental question: what mechanisms underlie hexamethonium-resistant peristalsis? We investigated whether blockade of the major receptors that underlie excitatory neuromuscular transmission is required for hexamethonium-resistant peristalsis. Video imaging of colonic wall movements was used to make spatiotemporal maps and determine the velocity of peristalsis. Propagation of artificial fecal pellets in the guinea pig distal colon was studied in hexamethonium, atropine, ω-conotoxin (GVIA), ibodutant (MEN-15596), and TTX. Hexamethonium and ibodutant alone did not retard peristalsis. In contrast, ω-conotoxin abolished peristalsis in some preparations and reduced the velocity of propagation in all remaining specimens. Peristalsis could still occur in some animals in the presence of hexamethonium + atropine + ibodutant + ω-conotoxin. Peristalsis never occurred in the presence of TTX. The major finding of the current study is the unexpected observation that peristalsis can occur after blockade of the major excitatory neuroneuronal and neuromuscular transmitters. Also, the colon retained an intrinsic polarity in the presence of these antagonists and was only able to expel pellets in an aboral direction. The nature of the mechanism(s)/neurotransmitter(s) that generate(s) peristalsis and facilitate(s) natural fecal pellet propulsion, after blockade of major excitatory neurotransmitters, at the neuroneuronal and neuromuscular junction remains to be identified.
منابع مشابه
Peristalsis and fecal pellet propulsion do not require nicotinic, purinergic, 5-HT3, or NK3 receptors in isolated guinea pig distal colon.
The neuronal mechanism by which distension of the colon triggers peristalsis and the propulsion of colonic contents is incompletely understood. In this study, we used video imaging and spatiotemporal mapping techniques to investigate the neuroneuronal mechanisms underlying peristalsis in isolated guinea pig distal colon. In direct contrast to previous studies, we found that hexamethonium (100 m...
متن کاملRegional Difference in Colonic Motility Response to Electrical Field Stimulation in Guinea Pig
BACKGROUND/AIMS In isolated guinea-pig colon, we investigated regional differences in peristalsis evoked by intrinsic electrical nerve stimulation. METHODS Four colonic segments from mid and distal colon of Hartley guinea pigs, were mounted horizontally in an organ bath. Measurement of pellet propulsion time, intraluminal pressure, electrical field stimulation (EFS; 0.5 ms, 60 V, 10 Hz), and ...
متن کاملNeurogenic and myogenic motor activity in the colon of the guinea pig, mouse, rabbit, and rat.
Gastrointestinal motility involves interactions between myogenic and neurogenic processes intrinsic to the gut wall. We have compared the presence of propagating myogenic contractions of the isolated colon in four experimental animals (guinea pig, mouse, rabbit, and rat), following blockade of enteric neural activity. Isolated colonic preparations were distended with fluid, with the anal end ei...
متن کاملMechanisms underlying distension-evoked peristalsis in guinea pig distal colon: is there a role for enterochromaffin cells?
The mechanisms underlying distension-evoked peristalsis in the colon are incompletely understood. It is well known that, following colonic distension, 5-hydroxytryptamine (5-HT) is released from enterochromaffin (EC) cells in the intestinal mucosa. It is also known that exogenous 5-HT can stimulate peristalsis. These observations have led some investigators to propose that endogenous 5-HT relea...
متن کاملToll-like receptor 4 contributes to the inhibitory effect of morphine on colonic motility in vitro and in vivo
Opioids rank among the most potent analgesic drugs but gastrointestinal side effects, especially constipation, limit their therapeutic utility. The adverse effects of opioids have been attributed to stimulation of opioid receptors, but emerging evidence suggests that opioids interact with the innate immune receptor Toll-like receptor 4 (TLR4) and its signalling pathway. As TLR4 signalling affec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 305 12 شماره
صفحات -
تاریخ انتشار 2013